
AAAI 2024 Tutorial

TexPoint fonts used in EMF.

Scott Sanner and Ayal Taitler

Introduction to MDP Modeling

and Interaction via

RDDL and pyRDDLGym

Part 1: Language Overview

RDDL Language & pyRDDLGym

Wildfire Mars Rover Recommender System

Power Generation UAVs Elevators

Includes OpenAI Gym interface, Simulator, Viz, JaxPlan

https://github.com/pyrddlgym-project

Questions:

(1) How to model

these domains?

(2) How to

“solve” them?

Why RDDL?

Solvers can

exploit model

structure; avoids

expensive &

unsafe sampling.

https://github.com/pyrddlgym-project

Multiple Target Audiences

• Planning folks familiar with (P)PDDL wondering

what RDDL is and when they might use it

• Planning language agnostics who are simply

interested in planning for MDPs and POMDPs

• RL researchers interested in how to specify and

exploit complex model structure

RDDL Tutorial Outline

• Part 1: Language Overview

– What is probabilistic planning in PPDDL?

– Why do we need RDDL?

– RDDL by example

– Overview of RDDL solution methodologies

• Part 2: PyRDDLGym

Stochastic Domain Languages as of 2009

• Probabilistic PDDL (PPDDL)
– more expressive than PSTRIPS

– for example, probabilistic universal
and conditional effects:

(:action put-all-blue-blocks-on-table
:parameters ()
:precondition ()
:effect (prob 0.9

(forall (?b)
(when (Blue ?b)

(not (OnTable ?b)))))

• Idea: make some effects stochastic

• Question: is this sufficient to model realistic problems?

• PPDDL Description:

 (:action load-box-on-truck-in-city
 :parameters (?b - box ?t - truck ?c – city)
 :precondition (and (BIn ?b ?c) (TIn ?t ?c))
 :effect (prob 0.7 (and (On ?b ?t) (not (BIn ?b ?c))))

London
Paris

Rome
Berlin MoscowLogistics:

More Realistic: Logistics?

• But wait… only one truck can move at a time???

• No concurrency, no time: will FedEx care?

• Can instantiate problems for any domain objects

- 3 trucks: 2 planes: 3 boxes:

Expressivity Limitations of PPDDL

• Many PPDDL domains were tweaks of PDDL domains

– Recipe: add success probability on some effects

• e.g., load-plane(p,x) succeeds with prob 0.9

– IPPC 2004/6, could win by determinizing / replanning

• led to work on “probabilistically interesting” PPDDL problems

(Little & Thiebaux, 2007)

• But what stochastic expressiveness is needed

for modeling real-world domains?
– Then we can ask what language is appropriate

Observation

• Planning languages direct 5+ years of research
– PDDL and variants

– Probabilistic PDDL (PPDDL)

• Why?
– Domain design is time-consuming

• So everyone (students) use existing benchmarks

– Need for comparison
• Planner code not always released

• Only means of comparison is on competition benchmarks

• Implication:
– We should choose our languages & problems well

– Let’s ask what problems we want to model / solve

What probabilistic problems

might we want to model?

Mars Rovers

• Continuous
– Time, robot position / pose, sun angle, battery reserves…

• Partially observable
– Even worse: high-dimensional partially observable

Mealeau, Benazera,

Brafman, Hansen,

Mausam. JAIR-09.

Elevator Control

• Concurrent Actions
– Elevator: up/down/stay

– 6 elevators: 3^6 actions

• Exogenous / Non-boolean
– Random integer arrivals

(e.g., Poisson) at every floor

• Complex Objective
– Minimize sum of wait times

– Could even be nonlinear function
(squared wait times)

• Complex Action Constraints
– People might get annoyed

if elevator reverses direction

http://www.melsa.com.sa/images/Elevators%20at%20Kingdom%20Centre,%20Riyadh.JPG
http://alpha.dickinson.edu/prorg/nectfl/elevators.jpg

Traffic Control

• Concurrent
– Multiple lights

• Indep. Exogenous Events
– Multiple vehicles

• Continuous Variables
– Nonlinear dynamics

• Partially observable
– Only observe stoplines

RDDL Tutorial Outline

• Part 1: Language Overview

– What is probabilistic planning in PPDDL?

– Why do we need RDDL?

– RDDL by example

– Overview of RDDL solution methodologies

• Part 2: PyRDDLGym

What are we missing in PPDDL?

• Independent concurrent stochastic actions & events

– Exogenous stochastic events that scale with domain size

• Random person arrivals at elevator floors, traffic movement

• Probabilities that are a complex function of state

– Resolution of stochastic or concurrent event conflicts

• Two elevators admit passengers from same floor

– Preconditions over joint actions (not per action)

• Joint traffic light configurations must adhere to safety constraints

• Remedy: action-centric (P)PDDL → fluent-centric RDDL

Need expressive decision-making

formalism that supports complex

stochastic fluent updates

Relational Dynamic Bayes Net

+ Influence Diagram (RDDL)

a.k.a. Relational Factored MDP

Dynamical Models & Influence Diagrams

t t+1

A

X1

X2

U

X1’

X2’

• Dynamic Bayes Nets (DBNs) …

– Represent state @ times t, t+1

• Assume stationary distribution

• Influence Diagrams (IDs)…

– Action nodes [squares]

• Not random variables

• Rather “controlled” variables

– Utility nodes <diamonds>

• A utility conditioned on state, e.g.

 U(X1’,X2’) = if (X1’=X2’) then 10 else 0
16

What is RDDL?

• Relational Dynamic

Influence Diagram

Language

– Relational

[DBN + Influence Diagram]

• Think of it as a

Relational Factored

(PO)MDP

– Fluent updates are

probabilistic programs

t t+1

a

x1

x2

r

x1’

x2’

o1
o2

Key task: how

to specify (lifted)

distributions &

reward?

A Brief History of (ICAPS) Time

STRIPS (1971)

Fikes & Nilsson

Relational

ADL (1987)

Pednault

Cond. Effects

Open World

PDDL 1.2 (1998)

McDermott et al

Univ. Effects

PDDL 2.1, + (2003)

Fox & Long

Numerical fluents,

Conc., Exogenous

PDDL 2.2 (2004)

Edelkamp & Hoffmann

Derived Pred, Temporal

PDDL 3.0 (2004)

Gerevini & Long

Traj. Constraints,

Preferences

PPDDL (2004)

Littmann & Younes

Prob. Effects

RDDL (2010)

Sanner

PDDL 2.2  DBN++

Dynamic Bayes Nets (1989)

Dean and Kanazawa

Factored Stochastic Processes

Big

Bang

SPUDD, Sym. Perseus (1999,

2004) Hoey, Boutilier, Poupart

DBN + Utility: Fact. (PO)MDP

ICAPS

UAI

3.2

Relational!

RDDL Tutorial Outline

• Part 1: Language Overview

– What is probabilistic planning in PPDDL?

– Why do we need RDDL?

– RDDL by example

– Overview of RDDL solution methodologies

• Part 2: PyRDDLGym

Example:

How to specify a problem in

RDDL (that cannot be

expressed in PPDDL)

Wildfire Domain

• Contributed by Zhenyu Yu (School of Economics
and Management, Tongji University)
– Karafyllidis, I., & Thanailakis, A. (1997). A model for

predicting forest fire spreading using gridular
automata. Ecological Modelling, 99(1), 87-97.

Wildfire in RDDL

cpfs {

burning'(?x, ?y) =

if (put-out(?x, ?y))

then false

else if (~out-of-fuel(?x, ?y) ^ ~burning(?x, ?y))

then Bernoulli(1.0 / (1.0 + exp[4.5 - (sum_{?x2: x_pos, ?y2: y_pos}

(NEIGHBOR(?x, ?y, ?x2, ?y2) ^ burning(?x2, ?y2)))]))

else

burning(?x, ?y); // State persists

out-of-fuel'(?x, ?y) = out-of-fuel(?x, ?y) | burning(?x,?y);

};

reward =

[sum_{?x: x_pos, ?y: y_pos} [COST_CUTOUT*cut-out(?x, ?y)]]

+ [sum_{?x: x_pos, ?y: y_pos} [COST_PUTOUT*put-out(?x, ?y)]]

+ [sum_{?x: x_pos, ?y: y_pos} [COST_NONTARGET_BURN*[burning(?x, ?y) ^ ~TARGET(?x, ?y)]]]

+ [sum_{?x: x_pos, ?y: y_pos}

[COST_TARGET_BURN*[(burning(?x, ?y) | out-of-fuel(?x, ?y)) ^ TARGET(?x, ?y)]]];

Each cell may independently

stochastically ignite

Power of Lifting
non-fluents game3x3 {

 domain = game_of_life;

 objects {

 x_pos : {x1,x2,x3};

 y_pos : {y1,y2,y3};

 };

 non-fluents {

 NEIGHBOR(x1,y1,x1,y2);

 NEIGHBOR(x1,y1,x2,y1);

 NEIGHBOR(x1,y1,x2,y2);

 NEIGHBOR(x1,y2,x1,y1);

 NEIGHBOR(x1,y2,x2,y1);

 NEIGHBOR(x1,y2,x2,y2);

 NEIGHBOR(x1,y2,x2,y3);

 NEIGHBOR(x1,y2,x1,y3);

 NEIGHBOR(x1,y3,x1,y2);

 NEIGHBOR(x1,y3,x2,y2);

 NEIGHBOR(x1,y3,x2,y3);

 NEIGHBOR(x2,y1,x1,y1);

 NEIGHBOR(x2,y1,x1,y2);

 NEIGHBOR(x2,y1,x2,y2);

 NEIGHBOR(x2,y1,x3,y2);

 NEIGHBOR(x2,y1,x3,y1);

 NEIGHBOR(x2,y2,x1,y1);

 NEIGHBOR(x2,y2,x1,y2);

 NEIGHBOR(x2,y2,x1,y3);

 NEIGHBOR(x2,y2,x2,y1);

 NEIGHBOR(x2,y2,x2,y3);

 NEIGHBOR(x2,y2,x3,y1);

 NEIGHBOR(x2,y2,x3,y2);

 NEIGHBOR(x2,y2,x3,y3);

 NEIGHBOR(x2,y3,x1,y3);

 NEIGHBOR(x2,y3,x1,y2);

 NEIGHBOR(x2,y3,x2,y2);

 NEIGHBOR(x2,y3,x3,y2);

 NEIGHBOR(x2,y3,x3,y3);

 NEIGHBOR(x3,y1,x2,y1);

 NEIGHBOR(x3,y1,x2,y2);

 NEIGHBOR(x3,y1,x3,y2);

 NEIGHBOR(x3,y2,x3,y1);

 NEIGHBOR(x3,y2,x2,y1);

 NEIGHBOR(x3,y2,x2,y2);

 NEIGHBOR(x3,y2,x2,y3);

 NEIGHBOR(x3,y2,x3,y3);

 NEIGHBOR(x3,y3,x2,y3);

 NEIGHBOR(x3,y3,x2,y2);

 NEIGHBOR(x3,y3,x3,y2);

 };

}

non-fluents game2x2 {

 domain = game_of_life;

 objects {

 x_pos : {x1,x2};

 y_pos : {y1,y2};

 };

 non-fluents {

 PROB_REGENERATE = 0.9;

 NEIGHBOR(x1,y1,x1,y2);

 NEIGHBOR(x1,y1,x2,y1);

 NEIGHBOR(x1,y1,x2,y2);

 NEIGHBOR(x1,y2,x1,y1);

 NEIGHBOR(x1,y2,x2,y1);

 NEIGHBOR(x1,y2,x2,y2);

 NEIGHBOR(x2,y1,x1,y1);

 NEIGHBOR(x2,y1,x1,y2);

 NEIGHBOR(x2,y1,x2,y2);

 NEIGHBOR(x2,y2,x1,y1);

 NEIGHBOR(x2,y2,x1,y2);

 NEIGHBOR(x2,y2,x2,y1);

 };

}

Simple domains

can generate

complex DBNs!

We’re getting ahead of

ourselves

Let’s see how RDDL can specify

a binary discrete DBN+ID

How to Represent Factored MDP?

P(p’|p,r)

RDDL Equivalent

Can think of

transition

distributions

as “sampling

instructions”

Let’s look at a few more RDDL

ingredients

• enum, integer, continuous fluents

• intermediate fluents

• observation fluents (POMDP)

• more control / stochastic constructs

A Discrete-Continuous POMDP?

Integer

Multi-

valued

Continuous

A Discrete-Continuous POMDP, Part I

A Discrete-Continuous POMDP, Part II

Integer

Multi-

valued

Real

Variance comes from other

previously sampled variables

Mixture of

Normals

Finally: Mars Rover example

• lifting

• non-fluents

• aggregation expressions

• joint action preconditions

Lifted Continuous MDP in RDDL:

Simple Mars Rover

x

y

Picture

Point 1

Picture

Point 3

Picture

Point 2

Simple Mars Rover: Part I
types { picture-point : object; };

 pvariables {

 PICT_XPOS(picture-point) : { non-fluent, real, default = 0.0 };

 PICT_YPOS(picture-point) : { non-fluent, real, default = 0.0 };

 PICT_VALUE(picture-point) : { non-fluent, real, default = 1.0 };

 PICT_ERROR_ALLOW(picture-point) : { non-fluent, real, default = 0.5 };

 xPos : { state-fluent, real, default = 0.0 };

 yPos : { state-fluent, real, default = 0.0 };

 time : { state-fluent, real, default = 0.0 };

 xMove : { action-fluent, real, default = 0.0 };

 yMove : { action-fluent, real, default = 0.0 };

 snapPicture : { action-fluent, bool, default = false };

 };

Constant

picture

points,

bounding box

Rover position

(only one

rover)

and time

Rover

actions

Question, how

to make multi-

rover?

Simple Mars Rover: Part II

cpfs {

 // Noisy movement update

 xPos' = xPos + xMove + Normal(0.0, MOVE_VARIANCE_MULT*xMove);

 yPos' = yPos + yMove + Normal(0.0, MOVE_VARIANCE_MULT*yMove);

 // Time update

 time' = if (snapPicture)

 then (time + 0.25)

 else (time + abs[xMove] + abs[yMove]);

 };

Fixed time for picture

Time proportional to

distance moved

White noise, variance

proportional to distance moved

Simple Mars Rover: Part III

 // We get a reward for any picture taken within picture box error bounds

 // and the time limit.

 reward = if (snapPicture ^ (time <= MAX_TIME))

 then sum_{?p : picture-point} [

 if ((abs[PICT_XPOS(?p) – xPos] <= PICT_ERROR_ALLOW(?p))

 ^ (abs[PICT_YPOS(?p) – yPos] <= PICT_ERROR_ALLOW(?p)))

 then PICT_VALUE(?p)

 else 0.0]

 else 0.0;

 action-preconditions {

 // Cannot snap a picture and move at the same time

 snapPicture => ((xMove == 0.0) ^ (yMove == 0.0));

 };

Reward for all pictures taken

within bounding box!

Cannot move and take

picture at same time.

Numeric and Logical Expressions

• RDDL permits expressive numeric expressions

– If you want to express the condition in Wildfire that “all cells have less

than 3 neighbors that are burning”, then you could say

if ([forall_{?x:Cell} [sum_{?n:Cell} Neighbor(?x, ?n) ^ burning(?n)] < 3])

then …

or

if ([max_{?x:Cell} [sum_{?n:Cell} Neighbor(?x, ?n) ^ burning(?n)]] < 3)

then …

• Allows you to write Latex-like math expressions

RDDL Recap

• Relational Dynamic

Influence Diagram

Language

– Relational

[DBN + Influence Diagram]

• Specify the probabilistic

process over relations to

generate next state

– Generate “ground” DBN+ID

given domain object instantiation

t t+1

a

x1

x2

r

x1’

x2’

o1
o2

RDDL Recap I

• Everything is a fluent (parameterized variable)
– State fluents

– Observation fluents

• for partially observed domains

– Action fluents

• supports factored concurrency

– Intermediate fluents

• derived predicates, correlated effects, …

– Constant nonfluents (general constants, topology relations, …)

• Flexible fluent types
– Binary (predicate) fluents

– Multi-valued (enumerated) fluents

– Integer and continuous fluents (from PDDL 2.1)

RDDL Recap II

• Semantics is ground DBN + Influence Diagram

– Naturally supports independent exogenous events

• General expressions in transition / reward

– Logical expressions (, , , , , )

– Arithmetic expressions (+,−,*,/,x,x, maxx)

– In/dis/equality comparison expressions (=, , <,>, , )

– Conditional expressions (if-then-else, switch)

– Standard Functions: pow[.], log[.], abs[.], max[.], sin[.]

– Basic probability distributions

• Bernoulli, Discrete, Normal, Poisson, Exponential, etc.

Logical expr. {0,1}

so can use in

arithmetic expr.

RDDL Recap III

• Goal + General (PO)MDP objectives
– Arbitrary reward

• goals, numerical preferences (c.f., PDDL 3.0)

– Finite horizon

– Discounted or undiscounted

• State/action constraints
– Encode legal “action-preconditions”

• (concurrent) action preconditions

– Assert “state-invariants”
• serve as integrity constraint checks on state

• e.g., an elevator cannot be in two locations

What RDDL does not do…

• RDDL just provides a language for specifying

complex (PO)MDPs

– For an MDP: <S, A, T, R>

– For a POMDP: <S, A, T, R, O, Z>

• RDDL does not define a policy

• RDDL does not specify a planning methodology

– It’s up to external planners to perform planning,

learning, or inference on the RDDL domain model

RDDL Tutorial Outline

• Part 1: Language Overview

– What is probabilistic planning in PPDDL?

– Why do we need RDDL?

– RDDL by example

– Overview of RDDL solution methodologies

• Part 2: PyRDDLGym

RDDL is a disciplined subset of modern

languages designed to facilitate compilation.

Common question from RL crowd:

Why RDDL vs. a Simulator in C++?

Answer: Want a language that can be

compiled into other formalisms for planning

and domain analysis such as abstraction.

RDDL

Jax

Computation

Graph

Gurobi XADD

RDDL Planning Overview
• Use RL (e.g., Stable Baselines for Gym)

https://github.com/pyrddlgym-project/pyRDDLGym-rl

• SOTA: compile instance to planning formalism
– MCTS (Discrete Search) (PROST, Keller et al, ICAPS-12) – discrete only

https://github.com/pyrddlgym-project/pyRDDLGym-prost

– Symbolic Dynamic Programming with XADDs (Sanner et al, UAI-11)

https://github.com/pyrddlgym-project/pyRDDLGym-symbolic

– Planning by Autodiff/Backprop (JaxPlan, Gimelfarb et al ICAPS-24)

https://github.com/pyrddlgym-project/pyRDDLGym-jax

– Planning by Gurobi Optimization (GurobiPlan, Gimelfarb et al ICAPS-24)

https://github.com/pyrddlgym-project/pyRDDLGym-gurobi

• Generalized Planning: “solve” at lifted domain level
– Relational / First-order MDPs (Khardon et al, Sanner et al)

– Graph neural network policies (Symnet 1/2/3: Mausam et al)

Note: Plan / policy should work for all instances

https://github.com/pyrddlgym-project/pyRDDLGym-rl
https://github.com/pyrddlgym-project/pyRDDLGym-prost
https://github.com/pyrddlgym-project/pyRDDLGym-symbolic
https://github.com/pyrddlgym-project/pyRDDLGym-jax
https://github.com/pyrddlgym-project/pyRDDLGym-gurobi

Symbolic Decision Diagram
Methods

SPUDD for Factored MDPs

• Value Iteration using ADDs (SPUDD)

– Can use ADDs or any DD that supports +,*,max

– Bounded approximations (APRICODD)

Vn+1(x1…xi) = R(x1…xi) +

maxa x1’…xi’ F1…Fi P(x1’|…xi) … P(xi’|…xi)

Vn(x1’…xi’)

DD

DDDD

DDDD

SPUDD: Hoey et al (1999), APRICODD: St. Aubin et al (2001)

XADDs for Discrete+Continuous MDPs

Reward

x

y

V1

V2

Value (Policy)

Sanner et al (UAI-11, AAAI-12, UAI-13)

RDDL Compiles to (X)ADDs!

• UAV Problem

Dynamic Bayesian Network

(DBN)
XADD for vel’(a1)

https://pyrddlgym.readthedocs.io/en/latest/xadd.html

https://pyrddlgym.readthedocs.io/en/latest/xadd.html

Planning by Autodiff / Backprop

JaxPlan: Encode Reward and Transition in a Stochastic
Computation Graph and Optimize End-to-end!

Wu, Say, Sanner (NeurIPS-17, JAIR-22, AI-19), SOGBOFA by Cui, Khardon, et al,

DisProd by Chaterjee, Khardon et al (IJCAI-23), JaxPlan by Gimelfarb et al (ICAPS-24)

GPU-based Gradient Path Planning via Autodiff

• RMSProp makes for a great non-convex optimizer!

Wu, Say, Sanner (NeurIPS-17)

Need Modern Non-convex Gradient Methods

RMSProp is the best-performing optimizer for
planning, likely b/c it can handle piecewise structure.

JaxPlanner for RDDL: https://pyrddlgym.readthedocs.io/en/latest/jax.html

https://pyrddlgym.readthedocs.io/en/latest/jax.html

Learning Deep Reactive Policies (DRPs)

Bueno, …, Sanner (AAAI-19)

DRP

Produce DRPs
with JaxPlan-DRP

Lifted Approaches:
Generalized Planning for RDDL

SymNet 1/2/3
(Mausam et al, IIT Delhi)

SymNet 2.0 (Sharma, Arora, Geißer, Mausam, Singla, ICML-22)

Compile RDDL DBN into GNN, Embed, Decode to Actions

(GNN learning is domain instance indepencent)

See SymNet 3.0

in UAI-23

RDDL Tutorial Outline

• Part 1: Language Overview

– What is probabilistic planning in PPDDL?

– Why do we need RDDL?

– RDDL by example

– Overview of RDDL solution methodologies

• Part 2: PyRDDLGym

pyRDDLGym

Wildfire Mars Rover Recommender System

Power Generation UAVs Elevators

Includes OpenAI Gym interface, Simulator, Viz, JaxPlan

https://github.com/pyrddlgym-project

More on

PyRDDLGym

with worked

examples in

Part 2!

https://github.com/pyrddlgym-project

	Slide 1: AAAI 2024 Tutorial
	Slide 2: RDDL Language & pyRDDLGym
	Slide 3: Multiple Target Audiences
	Slide 4: RDDL Tutorial Outline
	Slide 5: Stochastic Domain Languages as of 2009
	Slide 6: More Realistic: Logistics?
	Slide 7: Expressivity Limitations of PPDDL
	Slide 8: Observation
	Slide 9: What probabilistic problems might we want to model?
	Slide 10: Mars Rovers
	Slide 11: Elevator Control
	Slide 12: Traffic Control
	Slide 13: RDDL Tutorial Outline
	Slide 14: What are we missing in PPDDL?
	Slide 15: Need expressive decision-making formalism that supports complex stochastic fluent updates
	Slide 16: Dynamical Models & Influence Diagrams
	Slide 17: What is RDDL?
	Slide 18: A Brief History of (ICAPS) Time
	Slide 19: RDDL Tutorial Outline
	Slide 20: Example: How to specify a problem in RDDL (that cannot be expressed in PPDDL)
	Slide 21: Wildfire Domain
	Slide 22: Wildfire in RDDL
	Slide 23: Power of Lifting
	Slide 24: We’re getting ahead of ourselves
	Slide 25: How to Represent Factored MDP?
	Slide 26: RDDL Equivalent
	Slide 27: Let’s look at a few more RDDL ingredients
	Slide 28: A Discrete-Continuous POMDP?
	Slide 29: A Discrete-Continuous POMDP, Part I
	Slide 30: A Discrete-Continuous POMDP, Part II
	Slide 31: Finally: Mars Rover example
	Slide 32: Lifted Continuous MDP in RDDL: Simple Mars Rover
	Slide 33: Simple Mars Rover: Part I
	Slide 34: Simple Mars Rover: Part II
	Slide 35: Simple Mars Rover: Part III
	Slide 36: Numeric and Logical Expressions
	Slide 37: RDDL Recap
	Slide 38: RDDL Recap I
	Slide 39: RDDL Recap II
	Slide 40: RDDL Recap III
	Slide 41: What RDDL does not do…
	Slide 42: RDDL Tutorial Outline
	Slide 43: Common question from RL crowd: Why RDDL vs. a Simulator in C++?
	Slide 44: RDDL Planning Overview
	Slide 45: Symbolic Decision Diagram Methods
	Slide 46: SPUDD for Factored MDPs
	Slide 47: XADDs for Discrete+Continuous MDPs
	Slide 48: RDDL Compiles to (X)ADDs!
	Slide 49: Planning by Autodiff / Backprop
	Slide 50: JaxPlan: Encode Reward and Transition in a Stochastic Computation Graph and Optimize End-to-end!
	Slide 51: GPU-based Gradient Path Planning via Autodiff
	Slide 52: Need Modern Non-convex Gradient Methods
	Slide 53: Learning Deep Reactive Policies (DRPs)
	Slide 54: Lifted Approaches: Generalized Planning for RDDL
	Slide 55: SymNet 2.0 (Sharma, Arora, Geißer, Mausam, Singla, ICML-22)
	Slide 56: RDDL Tutorial Outline
	Slide 57: pyRDDLGym

