
Introduction to MDP Modeling and Interaction via
RDDL and pyRDDLGym

Ayal Taitler and Scott Sanner
University of Toronto

Lab, AAAI
February 20th, 2024

Part 2

MDP Modeling

Ø Markov Decision Process (MDP):
Ø S – States (discrete/continuous/hybrid)
Ø A – Actions (discrete/continuous/hybrid)
Ø R – Reward function (scalar)
Ø T – Transition function (conditional probability function)

OpenAI Gym

Ø OpenAI gives an interface to
implement MDPs

Ø Direct environment implementation
Ø Python coding of the logic

Ø Gaps
Ø Time consuming
Ø Hard coded parameters
Ø Minor change = new

implementation
Ø Infinite implementations
Ø No clean way to verify
Ø No access to the model

HVAC – scenario 1

HVAC – scenario 2

Motivation

One mathematical model
Two env implementations

With a lot of code duplication

Identical input/output
(actions/states)

Different transition function

Motivation

Ø OpenAI gives an interface to
implement MDPs

Ø Direct environment implementation
Ø Python coding of the logic

Who’s doing the implementation? 🤔

pyRDDLGym

RDDL → compiler → Gym environment

Ø Standard Gym interface and spaces
Ø Full access to the underlying model
Ø Differentiable dynamics*

https://pyrddlgym-project.github.io/

Language Variant

Full RDDL support!

New language features:

Ø Terminal states
𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 = 𝑐𝑜𝑛𝑑! ∨ 𝑐𝑜𝑛𝑑" ∨ ⋯∨ 𝑐𝑜𝑛𝑑#

Ø Nested indexing
𝑓𝑙𝑢𝑒𝑛𝑡′(? 𝑝, ? 𝑞) = 𝑁𝐸𝑋𝑇(𝑓𝑙𝑢𝑒𝑛𝑡(? 𝑝, ? 𝑞)

Ø Lifter parameter (in)equalities
? 𝑝 ==? 𝑟

Ø 𝑎𝑟𝑔𝑚𝑖𝑛 and 𝑎𝑟𝑔𝑚𝑎𝑥 for enumerables
Ø Basic matrix algebra, vectorized distributions, automatic

level reasoning and more.

Ø pyRDDLGym comes with a built-in ChartVisualizer class

Ø It is simple to create customs visualizers

Ø Inherit base class pyRDDLGym.Visualizer.StateViz
Ø One can use his favorite graphical lib, e.g., matplotlib, pygame, etc…

Visualizers

Auxillary Tools

Movie Generator

Ø Built-in functionality for movie generations of episodes

Ø Supports GIF and MP4

pyRDDLGym
Eco-system

Environments Repository

Gym’s Classical control environments

All previous RDDL domains

New exciting environments

RDDLRepositoy – home to all things RDDL, https://github.com/pyrddl-project/rddlrepository

https://github.com/pyrddl-project/rddlrepository

RaceCar

Ø Goal oriented problem

Ø Plan trajectory for a kinematic agent (2nd order) in presence of
obstacles

Ø Action: force/acceleration in two axes (𝑛! = 2)

Ø Observation: positions and velocities (𝑛" = 4)

Ø Reward:

𝑅 = −'
#$%

&

𝑎'(𝑘 + 𝑎)(𝑘 + 𝑅* + 1{!!" # ,!#" # -.$}

Termination: 𝑎'(𝑘 + 𝑎)(𝑘 < 𝑟0

Built-in Environments – Traffic

Ø Traffic network cogestion control

Ø Action: Extend/Change for light phases (each intersection)

Ø Observation: Cars in queues, phase, phase time, etc.

Ø Reward: Total travel time (number of cars in the network)

Ø Constraints: Min/max time in phase

1x1 Network

Built-in Environments – Traffic

1x5 Network

Symbolic Toolkit (I)

XADD for the
UAV domain

Extended Algebric Decision Diagrams (XADDs)

Ø Symbolic function representation for
Piecewise Linear functions

Ø Compact representation of the grounded cpfs
Ø Symbolic Dynamic Programming (SDP)
Ø Representation and framework backend

https://github.com/pyrddl-project/pyRDDLGym-symbolic

https://github.com/pyrddl-project/

Symbolic Toolkit (II)

DBN visualization

Dynamic Bayes Nets (DBNs) visualization

Ø Visualization of the causal relations

Ø Causality inference

Ø Direct GCN methods

e.g., SymNets (symbolic Networks)

https://github.com/pyrddl-project/pyRDDLGym-symbolic

https://github.com/pyrddl-project/

JaxPlanner
pyRDDLGym-jax

Built-in Model-based Planner

s0

+ return

s1

a0

r0

s2

a1

r1

s3

a2

r2

Simulate: Given plan 𝑎!, 𝑎", . . . , simulate states 𝑠# and reward 𝑟#

Dynamic Bayes’ Net (DBN)

Built-in Model-based Planner

s0

+ return

s1

a0

r0

s2

a1

r1

s3

a2

r2

Optimize: Adjust 𝑎# based on the return gradient

𝒂𝒕% = 𝒂𝒕 + 𝜼𝛁𝐚𝐭,
𝝉

𝒓𝝉

Wu, Ga, Buser Say, and Scott Sanner. ”Scalable planning with tensorflow for hybrid nonlinear domains.” NeurIPS (2017).

Built-in Model-based Planner
Closed-loop plan: Periodic re-planning (rolling horizon)

Built-in Model-based Planner
Closed-loop plan: Deep reactive policy

Bueno, T. P., de Barros, L. N., Mauá, D. D., and Sanner, S. Deep Reactive Policies for Planning in Stochastic Nonlinear Domains.
AAAI (2019).

s0

+ return

✓

s1

a0

r0

s2

a1

r1

s3

a2

r2

Built-in Model-based Planner
Stochastic domains: Use the reparameterization trick

Bueno, T. P., de Barros, L. N., Mauá, D. D., and Sanner, S. Deep Reactive Policies for Planning in Stochastic Nonlinear Domains.
AAAI (2019).

s0

+ return

s1

a0 ⇠0

r0

s2

a1 ⇠1

r1

s3

a2 ⇠2

r2

𝐬!"# ∼ 𝑝 ⋅ 𝐬! , 𝐚!

𝐬!"# = 𝜙 𝐬! , 𝐚! , 𝜉!

𝐬 + 𝐚 + 𝜎𝒩 𝟎, 𝐈

𝒩 𝐬 + 𝐚, 𝜎$𝐈

Built-in Model-based Planner
“Not all domains are born continuous”

– Anonymous

Built-in Model-based Planner
T-norm Fuzzy logic

𝑓%: 0,1 & → 0,1

RDDL Operation Continuous Expression
𝑎 ∧ 𝑏 𝑎 ∗ 𝑏

¬𝑎 1 − 𝑎

IF 𝑐 THEN 𝑎 ELSE b 𝑐 ∗ 𝑎 + 1 − 𝑐 ∗ 𝑏

forall_{?p : type} x(?p) /
?)
𝑥(? 𝑝)

a > b 𝑠𝑖𝑔𝑚𝑜𝑖𝑑
𝑎 − 𝑏
𝜏

Hands-on

Colab notebook

Ø Basic pyRDDLGym usage

Ø Modeling and execution

Ø JaxPlanner

https://colab.research.google.com/drive/19q8YSJcHzzCoFp3OiQBeYg2qsztbVkja?usp=sharing

